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A NOTE ON FINITE DEFLECTIONS OF CIRCULAR RING PLATES

by

E. Reissner

Department of Applied Mechanics and Engineering Sciences
UNIVERSITY OF CALIFORNIA, SAN DIEGO

La Jolla, California 92093

ABSTRACT

We solve the problem of the symmetrically deforming edge loaded

polar-orthotropic circular ring plate for the case of large deformations

of a radially rigid plate, and compare the results with the corresponding

solutions in accordance with the small finite deformation equations of

von Karman.
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A NOTE ON FINITE DEFLECTIONS OF CIRCULAR RING PLA'I'EST

By E. Reissner

Introduction. In what follows we consider once more the problem
of rotationally symmetric deflections, with reference to the difference
between results derived from equations for small finite symmetric deflections
(as a special case of the equations of von Karman) and equations for large
symmetric deflections, as given in [1]. Our principal object in reconsidering
this question is the formulation and solution of a specific problem which is of
such nature that the difference between the results which follow from the two
types of equations comes out to be of qualitative (and quantitative ) significance
in an easily recognized fashion. In addition to this, we will record the solu-
tion for two problems of bending and buckling for which the differences turn
out to be of somewhat lesser significance.

Equations for Symmetric Bending of Polar-Orthotropic Plates. We

recall that the two simultaneous second order differential equations for

meridional slope  and radial stress resultant H follow from a compatibility

equation

(r(e)' - Grcos(p = cosp - 1 , (1)

in conjunction with the moment equilibrium equation

’ A report on work supported by the Office of Naval Research.




(er)' - Macosqo = rHsin® - rVcosop . - (2)

s e — e

In these equations Ee and (r are midplane strains and Mr and Me are

stress couples in the usual sense, with V being an axial stress resultant,
and with the prime indicating differentiation with respect to r.

Equations (1) and (2) are complemented by constitutive equations,

‘r = BrNr - BuNe » ee = BaNe ” BUNr (3)

oo T S T e AT ST N T BT YT TSGR AT

AMI' = Drxr + DUXG r Me = DGXG + Dunr

with Nr and N9 given in terms of H and V, in the form
N_ = Hcosp + Vsinp , Ng = (rH)" , (5)

where, for simplicity's sake, radial distributed loads are considered absent,

and with xr and xe given in terms of ¢, in the form

" A ™g = sinp .

We further note the axial displacement formula
sinp : (7

in which, as it is in the equilibrium equation (2), an assumption of small
meridional strain is implied. We also note that stress resultants as well
as stress couples are defined per unit of undeformed length along curves
in the midplane of the plate.

For what follows it will be convenient to introduce the stress function

variables




v =rH , F =1rV (8)

and it will be assumed that the plate is uniform, so that the constitutive
coefficients B and D are independent of r. Itis furthermore assumed
that there are also no axial distributed loads, so that the load function F
comes out to be independent of r.

With this we have, upon introduction of (3) to (6) into equations (1) and

(2), the two simultaneous differential equations
By(r¥)' - [Brr" cos®o + B, (cos ¢) T

- [Brr'1 sinpcos® + Bu(sinﬁa) 1F = cosp - 1 (9)
Dr(rQO')' - Der-1 sinpcosp = ¥singp - Fcoso (10)

Equations (9) and (10) reduce to the corresponding equations (19) and (21)
(with pos 0) in [1], upon specialization to the case of isotropy, for which
BG =Br = B, Bv =vB and Dr =D6 = D, DU =vD.

It has earlier been shown, in [2], that equation (9) may be replaced,

effectively, by the abreviated equation
Be(r\ll')' - Brr-1\l' = cosp - 1 (99

and that a corresponding simplification in (10), which would consist in
replacing DG sinpcos¢p by Deqo, might not be equally appropriate [2].
However, for the problems considered in what follows this simplification will

in fact turn out to be admissible as well.
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The Boundary Value Problem. We consider a ring plate with inner

edge r = r and outer edge r = r and we assume that the two edges are
acted upon by axial stress resultants Vi and Vo and radial stress resultants
Hi and Ho' We further assume that no bending moments are applied along

either edge. We then have in equations (9) and (10) as expression for F
F =2V =V, (11)
o

and the boundary conditions for the fourth-order differential equation system

(9) and (10) are of the form

‘I’(ri) = ‘I’i 3 ‘I’(ro) = ‘I’o (12)
sinlp(ri) sin(p(ro)
Dr(p (ri) T sz_—i = 0 Drtp (ro) + Du ro =0 . (13)

We will not, in what follows, attempt to solve the problem in the above

generality. Instead, we consider the case or a plate having a limiting-type
of orthotropy, of such nature as to allow a relatively simple determination
of the differences of the solution of the given problem, in comparison with
the results which follow upon replacing equations (9) and (10) by the corre- ‘

sponding von Karman equations
7 s | 1
Bg(r¥)' - B_r ¥ = -zw"‘ : (14)

Dr(rcp')' - Derd(p = -F + Vo , (15)

with the conditions (13) being replaced by conditions of vanishing Drtp' +

-1
Dvr © = 0 for r -ri,ro.
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Closed-Form Solutions for Radially Rigid Ring-Plates. The case

of a radially rigid plate is given upon setting in the constitutive equations

(3) and (4)

B = B = 0 » D = @ . (16)

0o =0 ., (17)

with the moment Mr becoming a reactive quantity. Introduction of (16)
and (17) into the differential equations (9) and (10) and observation of the
reactive property of Mr in accordance with (2) changes the system of

differential equations (9) and (10) into

Be(r\l")' = cosp - Bi: = (18)
' -1 . o ; -

(er) - Der sm(oo cosQ_ = \Ilslmpo Fcosqoo ¥ (19)

again will the boundary conditions (12) and (13), with the latter conditions now
reverting to the form
= = . 20
M(r) =0 , M(r) =0 (20)
In what follows a further simplified version of the above problem will be

solved, which is given upon restricting attention to cases for which =5 < r..

We now write

F om 8 s 5, 2. 58+ .y (21)
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with 3b << a, and we take account of the fact that r in equations (18) and
(19) does not differ much from its mean value a by substituting for (18) and

(19) the simplified relations

aBe\I’ = cosQ - . S (22)
7 ;S S . £
a,Mr - Dea smtao cosp_ = I sn.nqo° Fcos P, - (23)

Equation (22), in conjunction with the boundary conditions (12), gives

as expression for ¥

cosp -1
£ o ima®. Liaes r-(a-b) r-ga+b!
v = __ZaBe [(r - a) b°] + \Iro 55 - \I/i 5% : (24)

The introduction of (24) into (25,, in conjunction with the boundary

conditions (2C), gives as expression for F in terms of (po, \Ilo and \Ili,

'E@. b2 1 - cos \I'o + \I'i
a

i * aBg 3coso * 2coso /sinwo 1 (25)
.} o
with Me anq Ne now being
sinp coso_ -1 v -V,
o o o i
Me = De a ’ Ne = ab (l' - a) + _2_b ’ ) (26)

and with the corresponding expressions for Mr and N_ leading to stress
: -~
values which are small compared to the values of the stresses associated

with Me and NG’ respectively.

Deflection Due to Equal and Opposite Axial Edge Forces. Setting

\Ilo = \Ili =0 and a + b~ a in equation (25), we obtain as expression for the

axial stress resultant
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i smqpo/D : .93_ 1 -costpok 2
Vo A Bg 3c05(p° $e il

with the associated relative deflection w of the two edges of the plate being
the quantity 2b sin(po.
Expansion of the righthand side of (27) in powers of ¢ , and rentention
o

of the leading nonlinear term gives the approximate result

]
© 2 ¢
of X 2
Vo s ;;\De + Ba %/ (28)

where now wo = 2b'p°. We note that equation (28) also follows as the exact

result of solving the identical problem through use of the small finite-deflec-

tion differential equations (14) and (15) and that, with Dy = Eh®/12 and

BO = 1/Eh, this equation may be wriiicn in the equivalent form

2
D w w
6 o/ 1 [o] ,
YV, " In\ g g i&8 )

where, as is expected, nonlinearity comes out to be significant for transverse
deflections of the order of the plate thickness.
For a comparison of the exact and of the approximate values of Vo’

we observe the numerical relations : :

3
s = 4 l—-wsizows (p—°~008l 2 1
‘po - 47 e 3cosgo° Y LA . (29)

which show that the use of small finite-deflection theory for this case amounts
to an underestimation of the force necessary to produce an angular deflection
of 45° by nearly twenty percent. Equations (27) and (28) show that this

percentage error increases steadily with wo’ in such a way that the exact




value of Vo approaches infinity as (po approaches /2, whereas the approxi-

mate value in accordance with (28) remains finite.

Deflection Due to Equal and Opposite Transverse Follower-Forces.

The case of transverse edge forces Qi and Qo is given upon setting in (25)

F = (a+ b)Qo cosqoo = (a - b)Qi cosp

(30)
‘I’o = -(a+ b)QOSINPO % \l’i = =l - b)Qi smqoo 2
Therewith, and again with a + b~ a, equation (25) becomes
Qo sin(poll B 1l- cz:osqao
cos P E a® \De i B— 3 cos¢ / (31)
o] . 9 po

Fxpansion in powers of o, and retention of the leading nonlinear
term gives the same approximate result (28) for the transverse resultant
Qo as was previously obtained for the axial resultant Vo. However, the
difference between Q° and Vo becomes significant with increasing values
of (ao. In particular, Qo remains finite as By approaches /2, in contrast
to the result for Vo.

Buckling Due to Radial Edge Loads. We now set

\Ilo = -(aL+b)Po ’ ‘I’i = -(a -b)Pi (32)

and at the same time set F = (a+b)V° = (a-b)Vi =0.
Equation (25) now has one trivial solution sintpo =0, with Me =0
and N = ('Ilo-\l’_l)/Zb, and one nontrivial solution, with @, related to P

and P‘i in the form

-8-
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1- costpo
(a+b)P° + (a -b)Pi = w——cos +

2b°
aBe 3

(33)

We conclude from equation (33) that buckling will occur for values Poc and

Pie given by

(a+bP__ + (a-bP,_ = 21369.'1 (34)

Equations (33) and (34) also contain a simple result for the postbuckling
behavior of the ring plate (insofar as the assumed deflection pattern persists).
We will show this for the case Po = Pi for which Poc = De/aa. Equation (33)

now becomes

212 1 - cosqao
azB6 3 ?

P = Poccoscpo = (33)

o

and this can be solved, so as to give @, in terms of PQ/PQc in the post-

buckling range, in the form

PP =l 3BgDy , P_ L

L (26°/3BgDy) - 1 3 T \P__ J

—

(36)

where, within the range of small-deflection theory, 1 - cos @ g,go:’/z.
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